Abstract

We find the equilibrium temperature for intrinsic glow discharge amorphous silicon to be 195–200 °C. Defects left behind after fast cooling result in a temperature-dependent dc photoconductivity which shows small differences in the tail state recombination kinetics when compared to defects left behind in the same number after light soaking. Finally anneal kinetics of fast cool defects follow neither singly activated, mono-, nor bimolecular kinetics with a temperature dependence indicating activation energies from 1.0 to 1.4 eV. Unlike the distribution of defects left behind in similar number as a result of light soaking at room temperature, the distribution of defects resulting from fast cooling from higher temperature is shifted to higher energies and requires much longer anneal times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.