Abstract

We report implementation of the equation-of-motion coupled-cluster (EOM-CC) method for double electron-attachment (DEA) with spin-orbit coupling (SOC) at the CC singles and doubles (CCSD) level using a closed-shell reference in this work. The DEA operator employed in this work contains two-particle and three-particle one-hole excitations, and SOC is included in post-Hartree-Fock treatment. Time-reversal symmetry and spatial symmetry are exploited to reduce computational cost. The EOM-DEA-CCSD method with SOC allows us to investigate SOC effects of systems with two-unpaired electrons. According to our results on atoms, double ionization potentials (DIPs), excitation energies (EEs), and SO splittings of low-lying states are calculated reliably using the EOM-DEA-CCSD method with SOC. Its accuracy is usually higher than that of EOM-CCSD for EEs or DIPs if the same target can be reached from single excitations by choosing a proper closed-shell reference. However, performance of the EOM-DEA-CCSD method with SOC on molecules is not as good as that for atoms. Bond lengths for the ground and the several lowest excited states of GaH, InH, and TlH are underestimated pronouncedly, although reasonable EEs are obtained, and splittings of the 3Σ- state from the π2 configuration are calculated to be too small with EOM-DEA-CCSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call