Abstract

We employ a four-component spinor relativistic equation-of-motion coupled-cluster (EOMCC) method within the single- and double- excitation approximation to calculate the single ionization potentials (IPs) and double ionization potentials (DIPs) of the He and Be isoelectronic sequences up to Ne. The obtained results are compared with the available results from the National Institute of Standards and Technology (NIST) database to test the performance of the EOMCC method. We also present intermediate results at different levels of approximations in the EOMCC framework to gain insight of the effect of electron correlation. Furthermore, we investigate the dependence of the IPs and DIPs of these ions on the ionic charge and observe that these follow parabolic trends. Similarities between the trends of IPs and DIPs in both the classes of considered systems are categorically demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.