Abstract
In this study, linear and non-linear signal analysis methods are implemented for epilepsy seizure detection using CHB-MIT EEG data taken from Boston children's hospital. In linear signal analysis, EEG signals are considered linear, although they are not linear. In linear signal analysis methods, root mean square (RMS) and mean of the EEG signals are analyzed. It is detected that the RMS value increased and the mean value moved away from zero in the positive and negative directions during the seizure period. Seizure periods in EEG signals are determined with RMS and mean values with 75 % and 58.4 % accuracy, respectively. Since EEG signals are not linear, the linear analysis is assumed insufficient and so entropy is preferred to linear signal analysis methods. Sample entropy (SmpE) and permutation entropy (PE) are preferred among entropy types. While an increase is observed in the sample entropy values at the beginning of the seizure, a decrease is observed in the permutation entropy values at the same time. When the entropy methods are examined separately, the onset of a seizure is determined with an accuracy of 66.6 % for both methods. However, when the entropy methods are examined together with the increase in the sample entropy value or the decrease in the permutation entropy, the accuracy rate increases to 79.2 % The resultant accuracy rates show that when one entropy method fails to catch the onset of a seizure the other can.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.