Abstract
Multivariate analysis of the EEG signal for the detection of Schizophrenia condition is proposed here. Multivariate Empirical Mode Decomposition (MEMD) is used to decompose the EEG signal into Intrinsic Mode Functions (IMF) signal. The randomness measure of the IMF signal is determined by computing the entropy of the signal. Five entropy measures such as Approximate entropy, Sample entropy, Permutation entropy, Spectral entropy, and Singular Value Decomposition entropy are measured from the IMF signal. These entropy measures showed a significant difference (p<0.01) between the healthy controls (HC) and Schizophrenia (SZ) subjects. Many state-of-the-art (SoA) machine learning classifiers are trained on the feature matrix obtained from entropy values of the IMF signal, amongst them Support Vector Machine based on Radial Basis Function (SVM-RBF) provided the highest accuracy and F1-score of 93% for the 95 features. The area under the curve (AUC) value of 0.9831 was obtained using this classifier. These performance metrics suggests that computation of randomness measure such as entropy in the multivariate IMF domain provided better discriminating power in detection of Schizophrenia condition from the multichannel EEG signal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have