Abstract
The debate is still ongoing on the optimal mode of interrogation for surface plasmon resonance (SPR) sensors. Comparative studies previously demonstrated that nanoparticles exhibiting a localized SPR (LSPR) have superior sensitivity to molecular adsorption processes while thin Au film-based propagating SPR is more sensitive to bulk refractive index. In this paper, it is demonstrated that nanohole arrays (1000 nm periodicity, 600 nm diameter and 125 nm depth), which support both LSPR and propagating SPR modes, exhibited superior sensitivity to bulk refractive index and improved detection limits for IgG sensing by using the Kretschmann configuration. The greater sensitivity to IgG detection in the Kretschmann configuration was obtained despite the shorter penetration depth of nanohole arrays excited in the enhanced optical transmission (EOT) configuration. The decay length of the electromagnetic field in EOT mode was estimated to be approximately 140 nm using a layer-by-layer deposition technique of polyelectrolytes (PAH and PSS) and was confirmed with 3D FDTD simulations, which was lengthen by almost a factor of two in the Kretschmann configuration. Spectroscopic data and field depth were correlated with RCWA and FDTD simulations, which were in good agreement with the experimental results. Considering these analytical parameters, it is advantageous to develop sensors based on nanohole arrays in the Kretschmann configuration of SPR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.