Abstract

The virtually imaged phased array (VIPA) spectrometer uses the orthogonal dispersion method and has the advantages of compact structure, high spectral resolution, and wide wavelength coverage. It has been widely used in different fields. However, due to the non-linear dispersion of the VIPA etalon and the cross-dispersion structure of the VIPA spectrometer, simple and high-accuracy wavelength calibration remains a challenge. In this paper, a new and simple five-parameter spectrogram model is developed by simplifying the phase-matching equation of the VIPA etalon and considering the angle between the camera and dispersion direction, which can achieve a frequency accuracy better than one pixel. The performance of the model is demonstrated by measuring the CO2 absorption spectrum in the range of 1.42 to 1.45 μm using a self-designed near-infrared VIPA spectrometer . The reported method is simple and easy to solve with high accuracy, which is conducive to promoting the application of VIPA spectrometers in precision measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.