Abstract

We report on the effect of a new microbial enzymatic system, Penicillium echinulatum cellulase, on the surface morphological (SEM), structural (XRD), and thermal (TGA/DTG) properties as well as the surface chemical composition (FT-IR and FT-Raman) of sisal fibers (Agave sisalana)—a potential replacement for glass fibers in composite materials. Cellulase treatment greatly improved the properties of sisal fibers, rendering the surface topography and chemical composition of the fibers free of contaminants and reducing the content of amorphous materials (hemicellulose, pectin, lignin, and disordered cellulose) to yield the crystalline cellulose network. Thermal stability and crystallinity were also greatly enhanced. This work demonstrated that microbial enzymes offer an inexpensive and environmentally attractive option to improve the surfaces of natural fibers for composite applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call