Abstract

Several types of the isomorphism classes of graph coverings have been enumerated by many authors. In 1988, Hofmeister enumerated the double covers of a graph, and this work was extended to n -fold coverings of a graph by the second and third authors. For regular coverings of a graph, their isomorphism classes were enumerated when the covering transformation group is a finite abelian or dihedral group. In this paper, we enumerate the isomorphism classes of graph coverings when the covering transformation group is a ℤ 2 -extension of a cyclic group, including generalized quaternion and semi-dihedral groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.