Abstract
The study of perfect state transfer on graphs has attracted a great deal of attention during the past ten years because of its applications to quantum information processing and quantum computation. Perfect state transfer is understood to be a rare phenomenon. This paper establishes necessary and sufficient conditions for a bi-Cayley graph having a perfect state transfer over any given finite abelian group. As corollaries, many known and new results are obtained on Cayley graphs having perfect state transfer over abelian groups, (generalized) dihedral groups, semi-dihedral groups and generalized quaternion groups. Especially, we give an example of a connected non-normal Cayley graph over a dihedral group having perfect state transfer between two distinct vertices, which was thought impossible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.