Abstract

We consider the scaling of the mass flux and entrainment velocity across the turbulent/non-turbulent interface (TNTI) in the far field of an axisymmetric jet at high Reynolds number. Time-resolved, simultaneous multi-scale particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) are used to identify and track the TNTI, and directly measure the local entrainment velocity along it. Application of box-counting and spatial-filtering methods, with filter sizes $\unicode[STIX]{x1D6E5}$ spanning over two decades in length, show that the mean length of the TNTI exhibits a power-law behaviour with a fractal dimension $D\approx 0.31{-}0.33$. More importantly, we invoke a multi-scale methodology to confirm that the mean mass flux, which is equal to the product of the entrainment velocity and the surface area, remains constant across the range of filter sizes. The results, within experimental uncertainty, also show that the entrainment velocity along the TNTI exhibits a power-law behaviour with $\unicode[STIX]{x1D6E5}$, such that the entrainment velocity increases with increasing $\unicode[STIX]{x1D6E5}$. In fact, the mean entrainment velocity scales at a rate that balances the scaling of the TNTI length such that the mass flux remains independent of the coarse-grain filter size, as first suggested by Meneveau & Sreenivasan (Phys. Rev. A, vol. 41, no. 4, 1990, pp. 2246–2248). Hence, at the smallest scales the entrainment velocity is small but is balanced by the presence of a very large surface area, whilst at the largest scales the entrainment velocity is large but is balanced by a smaller (smoother) surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.