Abstract
Describing the evolution of a wind turbine's wake from a top-hat profile near the turbine to a Gaussian profile in the far wake is a central feature of many engineering wake models. Existing approaches, such as super-Gaussian wake models, rely on a set of tuning parameters that are typically obtained from fitting high-fidelity data. In the current study, we present a new engineering wake model that leverages the similarity between the shape of a turbine's wake normal to the streamwise direction and the diffusion of a passive scalar from a disk source. This new wake model provides an analytical expression for a streamwise scaling function that ensures the conservation of linear momentum in the wake region downstream of a turbine. The model also considers the different rates of wake expansion that are known to occur in the near- and far-wake regions. Validation is presented against high-fidelity numerical data and experimental measurements from the literature, confirming a consistent good agreement across a wide range of turbine operating conditions. A comparison is also drawn with several existing engineering wake models, indicating that the diffusion-based model consistently provides more accurate wake predictions. This new unified framework allows for extensions to more complex wake profiles by making adjustments to the diffusion equation. The derivation of the proposed model included the evaluation of analytical solutions to several mathematical integrals that can be useful for other physical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.