Abstract

The interfacial region between two bodies of turbulent fluid was investigated through simultaneous particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) experiments in the far wake of a circular cylinder. Interface conditioned plots of enstrophy revealed the existence of a turbulent/turbulent interface (TTI) where the enstrophy adjusts itself between the two regions. An enstrophy jump was present even in the most extreme cases of subjected free-stream turbulence. Further analysis of the TTI through the lens of the enstrophy budget equation highlighted the altered roles of inertia and viscosity in the vicinity of the TTI. Unlike the turbulent/non-turbulent interface (TNTI), the inertial term is largely responsible for enstrophy production in the outer regions of the interface, whilst viscosity plays a much more subdued role. The global effects of free-stream turbulence on entrainment behaviour was investigated through the measurement of the mean entrainment flux. It was shown that an increase in intensity of the free-stream turbulence acted to reduce the mean entrainment flux into the wake. Length scale of the background turbulence on the other hand did not greatly influence entrainment behaviour in the far wake of a circular cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.