Abstract

Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum codes that can be obtained from arbitrary classical linear codes based on the entanglement-assisted stabilizer formalism. In this paper, by using generalized Reed–Solomon (GRS) codes, we construct two classes of entanglement-assisted quantum error-correcting MDS (EAQEC MDS) codes with parameters $$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a},\frac{q^2-1}{2a}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$ where q is an odd prime power of the form $$q=2am-1>3$$ with $$m\ge 2$$ , $$1\le c\le 2a-1$$ and $$c m+2\le d\le (a+\lceil \frac{c}{2}\rceil )m$$ , and $$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a+1},\frac{q^2-1}{2a+1}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$ where q is a prime power of the form $$q=(2a+1)m-1$$ , $$1\le c\le 2a$$ and $$c m+2\le d\le (a+1+\lfloor \frac{c}{2}\rfloor )m$$ . The EAQEC MDS codes constructed have much larger minimum distance than the known quantum MDS codes with the same length, and most of them are new in the sense that the parameters of EAQEC codes are different from all the previously known ones. In particular, some of our EAQEC MDS codes have much larger d than the known ones that are of the same length and consume the same number of ebits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.