Abstract

Abstract The vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Niño (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Niño (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mexico and the southwestern United States during CPEN. During La Niña (NINA), the seasonal mean IVT anomaly is opposite to that of two El Niño phases. Analyses of 6-hourly IVT anomalies indicate that there is strong moisture transport from the North Pacific into the northwestern and southwestern United States during EPEN and CPEN, respectively. The IVT is maximized on the southeastern side of a low located over the eastern North Pacific, where the low is weaker but located farther south and closer to shore during CPEN than during EPEN. Moisture enters the southwestern United States from the eastern tropical Pacific during NINA via anticyclonic circulation associated with a ridge over the southern United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.