Abstract

Recent results have shown that the MCTS algorithm (a new, adaptive, randomized optimization algorithm) is effective in a remarkably diverse set of applications in Artificial Intelligence, Operations Research, and High Energy Physics. MCTS can find good solutions without domain dependent heuristics, using the UCT formula to balance exploitation and exploration. It has been suggested that the optimum in the exploitation-exploration balance differs for different search tree sizes: small search trees needs more exploitation; large search trees need more exploration. Small search trees occur in variations of MCTS, such as parallel and ensemble approaches. This paper investigates the possibility of improving the performance of Ensemble UCT by increasing the level of exploitation. As the search trees become smaller we achieve an improved performance. The results are important for improving the performance of large scale parallelism of MCTS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.