Abstract

The aim of the current study is to probe the potentials of ensemble bio-inspired approaches to handle the deficiencies associated with designing large scale power systems. Ensemble computing has been proven to be a very promising paradigm. The fundamental motivation behind designing such bio-inspired optimization models lies in the fact that interactions among different sole optimizers can afford much better income as compared with an individual optimizer. To do so, the authors propose an optimization technique called ensemble mutable smart bee algorithm (E-MSBA) which is based on the aggregation of several independent low-level optimizers. Here, each low-level unit of the proposed ensemble framework uses mutable smart bee algorithm (MSBA) for optimization procedure. The main provocations behind selecting MSBAs of different properties as components of ensemble are twofold. On the one hand, MSBA proved its capability for handling multimodal constraint problems. On the other hand, based on different experiments, it was demonstrated that MSBA can find the optimum solution with a relatively low computational cost. In this study, the authors intend to indicate that the proposed ensemble paradigm can efficiently optimize the operating parameters of a large scale power system which includes different mechanical components. To this end, E-MSBA and some rival methods are taken into account for the optimization procedure. The obtained results reveal that E-MSBA inherits some positive features of the MSBA algorithm. Additionally, it is observed that the ensembling approach enables the proposed method to effectively tackle the flaws associated with optimization of large scale problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.