Abstract

To improve the thermostability of r27RCL from Rhizopus chinensis and broaden its industrial applications, we used rational design (FoldX) according to ΔΔG calculation to predict mutations. Four thermostable variants S142A, D217V, Q239F, and S250Y were screened out and then combined together to generate a quadruple-mutation (S142A/D217V/Q239F/S250Y) variant, called m31. m31 exhibited enhanced thermostability with a 41.7-fold longer half-life at 60 °C, a 5 °C higher of topt, and 15.8 °C higher of T5030 compared to that of r27RCL expressed in Pichiapastoris. Molecular dynamics simulations were conducted to analyze the mechanism of the thermostable mutant. The results indicated that the rigidity of m31 was improved due to the decreased solvent accessible surface area, a newly formed salt bridge of Glu292:His171, and the increased ΔΔG of m31. According to the root-mean-square-fluctuation analysis, three positive mutations S142A, D217V, and Q239F located in the thermal weak regions and greatly decreased the distribution of thermal-fluctuated regions of m31, compared to that of r27RCL. These results suggested that to simultaneously implement MD simulations and ΔΔG-based rational approaches will be more accurate and efficient for the improvement of enzyme thermostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.