Abstract
Serpins display a number of highly unusual structural properties along with a unique mechanism of inhibition. Although structures of numerous serpins have been solved by X-ray crystallography, little is known about the dynamics of serpins in their inhibitory active conformation. In this study, two complementary structural mass spectrometry methods, hydroxyl radical-mediated footprinting and hydrogen/deuterium (H/D) exchange, were employed to highlight differences between the static crystal structure and the dynamic conformation of human serpin protein, alpha(1)-antitrypsin (alpha(1)AT). H/D exchange revealed the distribution of flexible and rigid regions of alpha(1)AT, whereas footprinting revealed the dynamic environments of several side chains previously identified as important for the metastability of alpha(1)AT. This work provides insights into the unique structural design of alpha(1)AT and improves our understanding of its unusual inhibition mechanism. Also, we demonstrate that the combination of the two MS techniques provides a more complete picture of protein structure than either technique alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.