Abstract

The survival time of an islanding microgrid (I-MG) formed after a natural disaster is a reflection of its resilience. To improve the survival time of multiple I-MGs after a natural disaster, this paper explores flexible interconnection of multiple I-MGs by using the composable modular energy router (CMER). The model of the CMER and multiple I-MGs interconnection structure are introduced firstly. In order to describe the randomness of distributed renewable energy (DRE) and load demand, kernel density estimation (KDE), latin hypercube sampling (LHS) and simultaneous backward reduction (SBR) methods are used to generate and reduce the scene. Then, the I-MG survival time metrics and the bi-level optimization model of the CMER interconnected multiple I-MGs considering survival time-network losses are proposed. In order to solve the complicated bi-level optimization model, solving strategy and I-MG exiting interconnection mechanism are proposed. A case study which has three I-MGs after natural disasters is performed to carry out the evaluation model and methods. The results show that the proposed model and methods are effective. CMER can improve the survival time of multiple islanding microgrids. Furthermore, the capacity of the CMER can be optimized according to the optimization results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.