Abstract

Perovskite solar cells (PSCs), since their inception in 2009, have experienced a meteoric rise in power conversion efficiencies (PCEs), challenging established photovoltaic technologies. However, their commercial deployment is hindered by stability and performance issues related to the presence of defects at the perovskite surface and grain boundaries. This study focused on the exploration of Morpholinium tetrafluoroborate (MOT) as a post-treatment additive to mitigate these challenges. Comprehensive characterization techniques revealed that the synergistic action of Morpholine and BF4− ions in MOT substantially improved the quality of the perovskite films and passivates surface and bulk defects, yielding notable enhancements in device PCE and stability. MOT-doped PSCs exhibited a PCE of 23.83% and retain 92% of the initial PCE after 2000 h of continuous illumination under one sun condition. The findings underscore the significance of additive engineering in advancing perovskite solar cell technology, opening up prospects for high-performing and durable perovskite photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.