Abstract

Nonprecious transition metal (oxy)hydroxides play a vital role in accelerating the kinetics of sluggish oxygen evolution reaction (OER). The fast electron transfer from the electrocatalyst material surface to the electrode is key to obtaining improved OER activity in terms of improved reaction kinetics and reduced overpotential. Therefore, it is highly desirable to design electrocatalysts with efficient electron transport properties. Here, an approach of modulation of the morphology of Iron (oxy)hydroxide through the incorporation of Cr is used to obtain high electrocatalytic activity. The incorporation of Cr resulted in the modified morphology of Iron (oxy)hydroxide with the formation of a porous pit-like structure which offers large reactive sites to effectively adsorb the reactants and allow an efficient electron transfer pathway from electrocatalyst to circuit through Ni foam electrode. A 50 % Cr incorporated electrocatalyst (Fe5.0Cr5.0 (oxy)hydroxide) exhibits excellent OER activity with an overpotential of 237 mV and 297 mV at current densities of 10 and 100 mA cm─2, respectively owing to fast electron transport from electrocatalyst to substrate due to formation of porous pit-like structure. Furthermore, Fe5.0Cr5.0 electrocatalyst shows high durability of over 100 h at 10 mA cm─2. The enhanced OER activity is attributed to the effect of Cr incorporation and morphology modulation which helps to modulate the electronic structure as well as electrocatalytic active sites of Fe (oxy)hydroxide. The systematic incorporation and modulation of morphology pave the way for designing future electrocatalysts for various electrochemical activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.