Abstract
As autonomous driving technology advances, connected and autonomous vehicles (CAVs) will coexist with human-driven vehicles (HDVs) for an extended period. The deployment of CAVs will alter traffic flow characteristics, making it crucial to investigate their impacts on mixed traffic. This study develops a hybrid control framework that integrates a platoon control strategy based on the “catch-up” mechanism with lane management for CAVs. The impacts of the proposed hybrid control framework on mixed traffic flow are evaluated through a series of macroscopic simulations, focusing on fundamental diagrams, traffic oscillations, and safety. The results illustrate a notable increase in road capacity with the rising market penetration rate (MPR) of CAVs, with significant improvements under the hybrid control framework, particularly at high MPRs. Additionally, traffic oscillations are mitigated, reducing shockwave propagation and enhancing efficiency under the hybrid control framework. Four surrogate safety measures, namely time to collision (TTC), criticality index function (CIF), deceleration rate to avoid a crash (DRAC), and total exposure time (TET), are utilized to evaluate traffic safety. The results indicate that collision risk is significantly reduced at high MPRs. The findings of this study provide valuable insights into the deployment of CAVs, using control strategies to improve mixed traffic flow operations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have