Abstract
ABSTRACT Kelp forests, as foundation species, are vital to marine ecosystems, providing essential food and habitat for numerous organisms. This study explores the integration of crowdsourced labels with advanced artificial intelligence models to develop a fast and accurate kelp canopy detection pipeline using Landsat imagery. Building on the success of a machine learning competition, where this approach ranked third and performed consistently well on both local validation and public and private leaderboards, the research highlights the effectiveness of combining Mixed Vision Transformers (MIT) with ConvNeXt models. Training these models on various image sizes significantly enhanced the accuracy of the ensemble results. U-Net emerged as the best segmentation architecture, with UpperNet also contributing to the final ensemble. Key Landsat bands, such as ShortWave InfraRed (SWIR1) and Near-InfraRed (NIR), were crucial while altitude data were used in postprocessing to eliminate false positives on land. The methodology achieved a high detection rate, accurately identifying about three out of four pixels containing kelp canopy while keeping false positives low. Despite the medium resolution of Landsat satellites, their extensive historical coverage makes them effective for studying kelp forests. This work also underscores the potential of combining machine learning models with crowdsourced data for effective and scalable environmental monitoring. All running code for training all models and inference can be found at https://github.com/IoannisNasios/Kelp_Forests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have