Abstract
Accurately predicting flight delays remains a significant challenge in the aviation industry due to the complexity and interconnectivity of its operations. The traditional prediction methods often rely on meteorological conditions, such as temperature, humidity, and dew point, as well as flight-specific data like departure and arrival times. However, these predictors frequently fail to capture the nuanced dynamics that lead to delays. This paper introduces network centrality measures as novel predictors to enhance the binary classification of flight arrival delays. Additionally, it emphasizes the use of tree-based ensemble models, specifically random forest, gradient boosting, and CatBoost, which are recognized for their superior ability to model complex relationships compared to single classifiers. Empirical testing shows that incorporating centrality measures improves the models’ average performance, with random forest being the most effective, achieving an accuracy rate of 86.2%, surpassing the baseline by 1.7%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have