Abstract
BackgroundThis study aimed to develop ion-releasing and antibacterial resin-based dental sealants comprising 3 to 6 wt% monocalcium phosphate monohydrate (MCPM, M), 3 to 6 wt% bioactive glass (BAG, B), and 3 to 6 wt% polylysine (PLS, P). The physical properties, mechanical performance, cytotoxicity, and inhibition of S. mutans biofilm by these materials were subsequently evaluated.MethodsFive experimental dental sealants were formulated as follows: F1 (M6B6P6), F2 (M6B6P3), F3 (M3B3P6), F4 (M3B3P3), and F5 (M0B0P0, serving as the control). ClinproXT (CP, 3 M, Saint Paul, MN, USA) was used for commercial comparison. The degree of monomer conversion (DC) was determined using attenuated total reflectance-Fourier transform infrared spectroscopy (n = 5). The biaxial flexural strength (n = 6) and Vickers surface microhardness (n = 5) of the materials were evaluated after a 24-hour immersion in water. The element release over 4 weeks was measured using inductively coupled plasma-optical emission spectrometry (ICP-OES) (n = 3). The cell viability of mouse fibrosarcoma cells exposed to the extract was assessed via an MTT assay (n = 3). Additionally, the inhibition of S. mutans biofilm was tested (n = 3). Statistical analysis was conducted using one-way ANOVA and the Tukey HSD test.ResultsThe lowest DC among experimental sealants was obtained from F1 (66 ± 4%), which was significantly higher than CP (54 ± 2%, p < 0.001). The lowest biaxial flexural strength was obtained from F3 (131 ± 47 MPa). This was comparable to that of CP (140 ± 58 MPa, p = 0.992). The lowest surface microhardness among experimental materials was detected with F2 (19 ± 2 Vickers hardness number), which was higher than that of CP (12 ± 1 Vickers hardness number, p = 0.003). Furthermore, high cell viability of > 90% after exposure to extracts from the experimental materials was detected, which was similar to that observed with CP. Additionally, the experimental materials exhibited higher Ca and P release compared to CP and showed a potential trend for reducing S. mutans biofilm formation. Increasing additive concentrations exhibited minimal effects on material properties, except for enhanced elemental release and a slight reduction in BFM with higher PLS content.ConclusionThe experimental sealants provided sufficient physical and mechanical strength and maintained cell viability and bacterial inhibition with higher elemental release than the commercial product.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have