Abstract

BackgroundDuring the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed.ResultsWe constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance.ConclusionsIn this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

Highlights

  • During the bread-making process, industrial baker’s yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress

  • We previously found that laboratory yeast strains with proline accumulation by expressing the proline-feedback inhibition-less sensitive mutant -glutamyl kinase (Pro1I150T) were tolerant to various stresses, including freezing, desiccation, oxidation, and ethanol (Figure 1) [7,8,9,10,11,12]

  • Intracellular proline contents of baker’s yeast strains We have already shown that proline accumulation with the expression of Pro1-I150T confers oxidative stress tolerance and fermentation ability after freezing stress [14] and highsugar stress [15] using the put1-disrupted strain

Read more

Summary

Introduction

During the bread-making process, industrial baker’s yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Baker’s yeast (mostly strains of Saccharomyces cerevisiae) is exposed to various baking-associated stresses such as air-drying, high temperature, freeze-thaw, and high osmotic pressure during bread making [1]. During the preparation process for dried yeast, yeast cells are exposed to air-drying stress, which exerts many harmful influences such as the accumulation of misfolded proteins [2], mitochondrial dysfunction, and vacuolar acidification [3], leading to lowered fermentation ability. Air-drying stress is considered to be a combination of two stresses, high temperature and dehydration

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call