Abstract
BackgroundScientists have faced difficulties in synthesizing natural substances with potent biological activity from cost-effective sources. Endophytic fungi metabolites with nanoparticles have been utilized to develop a friendly, suitable procedure to address this problem and ameliorate the average amount of antioxidant, antimicrobial, and anticancer materials. Therefore, this study utilized endophytic fungi as a source of the natural extract with biosynthesized manganese nanoparticles (MnNPs) in the form of nanocomposites.MethodsThirty endophytic fungi were isolated and were assessed for their antioxidant activity by 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial activity. The most potent isolate was identified utilizing 18S rRNA and was applied to purify and separate their natural antimicrobial products by Flash column chromatography. In addition, the most potent product was identified based on instrumental analysis through Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and Gas chromatography-mass spectrometry (GC.MS). The purified product was combined with biosynthsesized manganese nanoparticles (MnNPs) for the production of nanocomposite (MnNCs). Later on, the physicochemical features of MnNPs and its MnNCs were examined and then they were assessed for determination their biological activities.ResultsThe most potent isolate was identified as Aspergillus terreus with accession number OR243300. The antioxidant and antimicrobial product produced by the strain A. terreus was identified as an amide derivative consisting of 3-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-4-oxopentanoic acid (HDOCOX) with the chemical formula C13H18O5. Furthermore, purified HDOCOX, MnNPs and Mn-HDOCOX-NPs nanocomposite (MnNCs) showed significant antimicrobial effectiveness. The minimum inhibitory concentrations (MICs) determined for MnNCs were 10 µg/mL against C. albicans and E.coli. Furthermore, MnNCs were reduced hepatocellular carcinoma viability.ConclusionThe use of HDOCOX, either alone or in combination with MnNPs, is a potential candidate for inhibiting pathogenic microbes and the development of an anticancer drug pipeline.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have