Abstract

Spin-orbit coupling (SOC) can provide essential tools to manipulate electron spins in two-dimensional materials like graphene, which is of great interest for both fundamental physics and spintronics application. In this paper, we report the low-field magnetotransport of in situ hydrogenated graphene where hydrogen atoms are attached to the graphene surface in continuous low temperature and vacuum environment. Transition from weak localization to weak antilocalization with increasing hydrogen adatom density is observed, indicating enhancing Bychkov-Rashba-type SOC in a mirror symmetry broken system. From the low-temperature saturation of phase breaking scattering rate, the existence of spin-flip scattering is identified, which corroborates the existence of magnetic moments in hydrogenated graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.