Abstract

Abstract We present a flexible manipulation and control of solitons via Bose-Einstein condensate. In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential, our investigation reveals the numerical local solutions within the system. By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation, diverse soliton structures emerge within the system. These include plane-wave solitons, two distinct types of stripe solitons, and odd petal solitons with both single and double layers. The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling. Specifically, stripe solitons can maintain stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain stable existence under similar conditions. When rotational frequency is introduced to the system, solitons undergo a transition from stripe solitons to a vortex array characterized by sustained rotation. The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling. As a result, the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call