Abstract

The effect of dopant cesium (Cs(I)) over a concentration range from 1 to 10mol% on the growth process, morphology, thermal and optical properties of tri(thiourea)zinc(II) sulfate (ZTS) single crystals grown by slow evaporation solution growth technique has been investigated. Incorporation of Cs(I) into the crystal lattice was well confirmed by energy dispersive X-ray spectroscopy (EDS). The lattice parameters of the as-grown crystals were obtained by single crystal X-ray diffraction analysis. The reduction in the intensities observed in powder X-ray diffraction patterns of doped specimen and slight shifts in vibrational frequencies in fourier transform infrared spectra (FT-IR) indicate the lattice stress as a result of doping. Thermal studies reveal the purity of the material and no decomposition is observed up to the melting point. High transmittance is observed in the visible region and the cut-off λ is ∼280nm. The surface morphology of the as-grown specimens was studied by scanning electron microscopy (SEM). The second harmonic generation (SHG) efficiency of the host crystal is enhanced greatly in the presence of high concentrations of the dopant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call