Abstract
Carbon-supported single Mn sites coordinated with nitrogen (Mn-N-C) catalysts are amongst the most favorable platinum group metal-free (PGM-free) catalysts for proton exchange membrane fuel cells (PEMFCs). However, the high overpotential of these catalysts, limits their application for oxygen reduction reaction (ORR). Experiments showed that O and S heteroatom co-doping increases the catalytic activity of Mn-N-C catalysts for electrochemical gas conversion. This prompted us to perform a systematic investigation of the formed co-doped configurations at the atomic scale and to study the corresponding reaction mechanisms for oxygen reduction in acidic environment. All probable configurations for Mn-NxOySz/C10 complexes are considered and the most stable and durable structures are selected as ORR active catalysts. Our results confirm the strong stabilization of the Mn sites over N4- and N3-doped carbonaceous support and consequently their stability against oxidation in contrast to other O and/or S co-doped heterostructures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have