Abstract

The time-dependent four-wave mixing (FWM) is analyzed in a four-level double semiconductor quantum well. The results show that both the amplitude and the conversion efficiency of the FWM field are enhanced with increasing the strength of two-photon Rabi frequency. Interestingly, when the one-photon detuning becomes stronger the control field corresponding to the maximum efficiency increases. Such a controlled enhanced FWM may be used to generate coherent short-wave length radiation, and it can have potential applications in quantum control and communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call