Abstract
In this work, an Electrostatic Doped Carbon Nanotube Tunneling FET (ED CNT-TFET) has been designed and simulated using a work function engineering technique. An intrinsic CNT is introduced as a channel material and a doped pocket is created between the source and the channel by utilizing an appropriate work function to boost the ON-state current of the device. Moreover, dielectric pocket engineering is applied to boost the high-frequency performance. The simulations, performed in this work, are conducted through a 2D solution of Poisson and Schrodinger equations which are done by utilizing the unbalanced Green function formalism. Simulation results demonstrate that the proposed device structure could improve the ON-current, cut-off frequency, and achieve a low subthreshold swing (SS) value which makes it suitable for low power applications. Additionally, the presented structure could also eliminate ambipolar conduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have