Abstract

Author SummaryThe balance between excitation and inhibition in the cerebral cortex is important for multiple brain functions. Down-regulation of GABA-induced inhibition disrupts this balance and may lead to epileptic seizures. Asynchronous release of GABA is known to occur at certain GABAergic synapses and represents release of inhibitory neurotransmitter that is not precisely timed to presynaptic action potentials. Whether asynchronous release is subject to change after the induction of epilepsy remains unclear. In this study, using simultaneous recordings from inhibitory fast-spiking neurons and excitatory pyramidal cells, we found that asynchronous release occurred at the output synapses of fast-spiking neurons in both human and rat neocortex. The occurrence of asynchronous release depended on the level of residual calcium at the presynaptic terminals but not on postsynaptic spiking. Further experiments using cortical tissue derived from human patients with intractable epilepsy and from a rat model of the disorder revealed an elevation of asynchronous release in epileptic cortex, possibly resulting from an increase in action potential amplitude of fast-spiking neurons and changes in calcium dynamics in their axon terminals. Taken together, these results demonstrate that asynchronous release is a fundamental property shared by neocortical fast-spiking neurons regardless of species, and the enhancement of asynchronous release in epileptic tissue suggests a role for it in regulating epileptic activities.

Highlights

  • During active states in the cerebral cortex, cortical neurons receive both excitatory and inhibitory synaptic inputs

  • In this study, using simultaneous recordings from inhibitory fast-spiking neurons and excitatory pyramidal cells, we found that asynchronous release occurred at the output synapses of fast-spiking neurons in both human and rat neocortex

  • Further experiments using cortical tissue derived from human patients with intractable epilepsy and from a rat model of the disorder revealed an elevation of asynchronous release in epileptic cortex, possibly resulting from an increase in action potential amplitude of fast-spiking neurons and changes in calcium dynamics in their axon terminals

Read more

Summary

Introduction

During active states in the cerebral cortex, cortical neurons receive both excitatory and inhibitory synaptic inputs. Proper balance of these inputs [1,2] is important for neuronal responsiveness to incoming inputs [3,4] and for sensory processing [5,6]. Disruption of this balance may cause malfunctioning of the network, leading to various brain disorders such as epileptic seizures [7,8]. There are several lines of evidence showing no substantial change in the basal

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.