Abstract
The brain must guide immediate responses to beneficial and harmful stimuli while simultaneously writing memories for future reference. While both immediate actions and reinforcement learning are instructed by dopamine, how dopaminergic systems maintain coherence between these 2 reward functions is unknown. Through optogenetic activation experiments, we showed that the dopamine neurons that inform olfactory memory in Drosophila have a distinct, parallel function driving attraction and aversion (valence). Sensory neurons required for olfactory memory were dispensable to dopaminergic valence. A broadly projecting set of dopaminergic cells had valence that was dependent on dopamine, glutamate, and octopamine. Similarly, a more restricted dopaminergic cluster with attractive valence was reliant on dopamine and glutamate; flies avoided opto-inhibition of this narrow subset, indicating the role of this cluster in controlling ongoing behavior. Dopamine valence was distinct from output-neuron opto-valence in locomotor pattern, strength, and polarity. Overall, our data suggest that dopamine's acute effect on valence provides a mechanism by which a dopaminergic system can coherently write memories to influence future responses while guiding immediate attraction and aversion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.