Abstract

Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell recording from fast-spiking (FS) interneurons and pyramidal cells (PCs) in prefrontal cortical slices obtained from juvenile and adult rats. In response to AP trains in FS neurons, AR occurred at their output synapses during both age periods, including FS autapses and FS-PC synapses; however, the AR strength was significantly weaker in adults than that in juveniles. Further experiments suggested that the reduction of AR in adult animals could be attributable to the rapid clearance of residual Ca(2+) from presynaptic terminals. Together, our results revealed that the AR strength was stronger at juvenile but weaker in adult, possibly resulting from changes in presynaptic Ca(2+) dynamics. AR changes may meet the needs of the neural network to generate different types of oscillations for cortical processing at distinct behavioral states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.