Abstract
Thyroid disorders are increasingly prevalent, making early detection crucial for reducing mortality and complications. Accurate prediction of disease progression and understanding the interplay of clinical features are essential for effective diagnosis and treatment. Our study addresses these challenges by employing a standard machine learning model, enhanced with comprehensive clinical feature analysis and an ensemble learning technique. By leveraging machine learning, we can identify key risk factors and improve diagnostic accuracy. To achieve optimal prediction outcomes, we evaluated seventeen machine learning models and implemented an Ensemble ML classifier using a hard voting strategy. Class balancing techniques, particularly random oversampling, significantly improved classification performance. Our experimental results demonstrate that the proposed model outperforms existing methods, achieving 100% sensitivity and 99.72% accuracy using the XGBoost algorithm and SelectKBest feature selection. By addressing feature reduction and high class-imbalance, the ensemble ML classifier with hard voting proves more effective in handling classification challenges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have