Abstract

Cu2GeSe3 was synthesized via a procedure without annealing step, which leads to suppressed lattice thermal conductivity via formation of more defects. However, an unexpected drop in Seebeck coefficient was also observed compared with samples with similar hole concentration, which may be related to some kind of compensation effect in Seebeck coefficient. To suppress this effect and optimize the thermoelectric performance, a series of copper-deficient samples Cu2-xGeSe3(x = 0, 0.05, 0.1, 0.2) are prepared and studied. Contrary to common knowledge, it is found that the copper deficiency decreases the hole concentration rather than increase it. An upturn in electrical conductivity curve and a bending in Seebeck coefficient curve are found in the copper-deficient samples, which may be related to bipolar effect, or to the thermal ionization of acceptors such as VCu. Finally the power factor is optimized and the peak value of zT = 0.65 is obtained at 758 K for Cu1.95GeSe3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.