Abstract
Intelligent fire warning system is a crucial protective equipment reduce fire hazards. A recent increasing concern is the development of sensitive fire warning materials that can be integrated with combustible materials to provide real-time alarms in the fire. However, current research on improving the sensitivity of fire warning sensors based on temperature-resistance response focuses on constructing continuous conductive networks. The effect of the heat transfer process is ignored, which limits the further improvement of alarm sensitivity. Here, we developed a strategy to improve thermal conductivity. Based on the chitosan (CS) conductive network in Ti3O5-based fire sensing system, aminated 2D h-BN nanosheets with high temperature resistance and ultrahigh in-plane thermal conductivity were further introduced. The h-BN improves the thermal conductivity of the fire warning coating from 1.43 W/m·K to 2.29 W/m·K. Intelligent fire warning sensors with ultra-sensitivity (1.16 s), low response temperature (170 °C), duration time (12 min) and durability (100 cycles) were successfully prepared by improving thermal conductivity to rapidly transfer heat to Ti3O5, which leads to a rapid decrease in resistance as the core mechanism. This work proposed an ingenious strategy for the construction of high fire safety and thermal conduction fireproof coatings, which revealed enticing prospects in the field of intelligent coatings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have