Abstract

We present a method of enhanced sensing of AC magnetic fields. The method is based on the construction of a robust qubit by the application of continuous driving fields. Specifically, magnetic noise and power fluctuations of the driving fields do not operate within the robust qubit subspace, hence robustness to both external and controller noise is achieved. The scheme is applicable to either a single ion or an ensemble of ions. We consider trapped-ion based implementation via the dipole transitions, which is relevant for several types of ions, such as the , and the ions. Taking experimental errors into account, we conclude that the coherence time of the robust qubit can be improved by up to ∼4 orders of magnitude compared to the coherence time of the bare states. We show how the robust qubit can be utilised for the task of sensing AC magnetic fields in the range with an improvement of ∼2 orders of magnitude of the sensitivity. In addition, we present a microwave-based sensing scheme that is suitable for ions with a hyperfine structure, such as the ,,,,,, and the ions. This scheme enables the enhanced sensing of high-frequency fields at the GHz level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.