Abstract

The growing interest in optical quantum systems has led to the exploration of multiple platforms. Though pioneering experiments were performed in trapped atom and trapped ion systems, solid state systems show promise of being scalable and robust. Rare earth dopants in crystalline hosts are an appealing option because they possess a rich spectrum of energy levels that result from a partially filled electron orbital. While level structure varies across the period, all elements possess crystal field splittings corresponding to near infra-red or optical frequencies, as well as Zeeman and often hyperfine levels separated by radio frequency and microwave frequencies. These levels demonstrate long excited-state lifetimes and coherence times and have been used in diverse applications, including demonstrating storage of a photonic state, converting of optical to microwave photons, and manipulating a single ion as a single qubit. The ions' weak interaction with their environment results in low coupling to optical fields, which had previously required measurements with macroscopically large ensembles of ions. Coupling the ions to an optical cavity enables the use of a smaller ensemble, which is required for the development of the aforementioned technologies in an on-chip scalable architecture. This thesis contains recent progress towards fabricating optical micro and nanocavities coupled to ensembles of erbium ions, mainly erbium in yttrium orthosilicate. In one design, focused ion beam milling was used to create a triangular nanobeam photonic crystal cavity in a bulk erbium-doped substrate. A second design leveraged the fabrication capabilities of silicon photonics, defining amorphous silicon ring resonators using electron beam lithography and dry etching. These devices coupled evanescently to erbium ions below the ring, in the bulk substrate. Simulation, design, fabrication, and characterization of both resonators are discussed. Coupling between the ions and the resonator is demonstrated for each, and capabilities offered by these devices are described. Preliminary work implementing coherent control of erbium ions is presented. Lastly, alternative substrates are evaluated for possible future solid-state erbium systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call