Abstract

Quantum light-matter interfaces that can reversibly map quantum information between photons and atoms are essential for building future quantum networks. Crystals doped with rare-earth ions (REIs) are an attractive solid-state platform for such light-matter interfaces due to their exceptional optical and spin coherence properties at cryogenic temperatures. Building scalable REI-based technology has proven to be challenging due to the inherently weak coupling of REIs with light. This thesis explores the integration of REIs with nanophotonic resonators to overcome this weak light-matter interaction and enable efficient, scalable quantum light-matter interfaces. Specifically, this work focuses on the development of quantum nanophotonics with ytterbium in yttrium orthovanadate. This thesis begins with an introduction to a nanophotonic platform based on photonic crystal cavities fabricated directly in rare-earth host materials and highlights the initial successes of this platform with neodymium-doped materials. This motivates an examination of the optical and spin coherence properties of 171 Yb:YVO 4 , a REI material that was previously unexplored for quantum technology applications. This material is found to have strong optical transitions compared to other REI-doped materials, a simple energy level structure, and long optical and spin coherence lifetimes. The focus then turns to the detection and coherent manipulation of single ytterbium ions coupled to nanophotonic cavities. The Purcell-enhancement in these cavities enables efficient optical detection and spin initialization of individual ytterbium ions. We identify ions corresponding to different isotopes of ytterbium and show that the coupling of electron and nuclear spin in ytterbium-171 at zero-field gives rise to strong electron-spin-like transitions that are first-order insensitive to magnetic field fluctuations. This allows for coherent microwave control and the observation of long spin coherence lifetimes at temperatures up to 1 K. We then make use of the optical selection rules and energy structure of 171 Yb:YVO 4 to demonstrate high-fidelity single-shot optical readout of the spin state. These results establish nanophotonic devices in 171 Yb:YVO 4 as a promising platform for solid-state quantum light-matter interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.