Abstract

Abstract Low-loss high-speed switches are an integral component of future photonic quantum technologies, with applications in state generation, multiplexing, and the implementation of quantum gates. Phase modulation is one method of achieving this switching; however, existing optical phase modulators offer either high bandwidth or low loss – not both. We demonstrate fast (100 MHz bandwidth), low-loss (83(2) % transmission) phase shifting (∆ϕ = (0.90(5))π) in a signal field, induced by a control field, and mediated by the two- photon 5S1/2 → 5P3/2 → 5D5/2 transition in 87Rb vapour. The all-optical nature of the scheme circumvents restrictions of electronic phase modulators, where bandwidth and repetition rate can be limited by the requirement to rapidly modulate high voltages. We discuss routes to enhance both performance and scalability for application to a range of quantum and classical technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.