Abstract

Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the midsequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.