Abstract

Ultracold polar molecules are promising candidate qubits for quantum computing and quantum simulations. Their long-lived molecular rotational states form robust qubits, and the long-range dipolar interaction between molecules provides quantum entanglement. In this work, we demonstrate dipolar spin-exchange interactions between single calcium monofluoride (CaF) molecules trapped in an optical tweezer array. We realized the spin- 1 2 quantum XY model by encoding an effective spin- 1 2 system into the rotational states of the molecules and used it to generate a Bell state through an iSWAP operation. Conditioned on the verified existence of molecules in both tweezers at the end of the measurement, we obtained a Bell state fidelity of 0.89(6). Using interleaved tweezer arrays, we demonstrate single-site molecular addressability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.