Abstract

Vanadium redox flow battery (VFB) is promising for use as an energy storage/conversion device, however membrane imposes a limitation in enhancing the performance of VFB. Herein, a novel diamine monomer bis(2-trifluoromethyl-4-aminobenzene) amine containing imino groups is synthesized by nucleophilic substitution and reduction reactions. Then, we develop four branched sulfonated polyimide (I-bSPI) membranes with 40%–70% theoretical sulfonation degrees for application in VFB. The trade-off between proton conduction and vanadium ion blocking of I-bSPI membrane is broken, and the stability of I-bSPI membrane is also effectively enhanced owing to hydrogen bonds network and Donnan repulsion effect. Surprisingly, the proton selectivity of I-bSPI-50 membrane is 4.6 times that of commercial Nafion 212 membrane. In addition, I-bSPI-50 membrane exhibits superior coulomb and energy efficiencies to Nafion 212 membrane at 100–300 mA cm−2. And I-bSPI-50 membrane has steady efficiencies and high capacity holding abilities during 600-time cycles. This work illustrates a promising pathway to obtain cost-effective membrane by hydrogen bonds construction strategy for VFB application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.