Abstract

A series of novel branched sulfonated polyimide (bSPI-x) membranes with 8% branched degree are developed for application in vanadium redox flow battery (VRFB). The sulfonation degrees of bSPI-x membranes are precisely regulated for obtaining excellent comprehensive performance. Among all bSPI-x membranes, the bSPI-50 membrane shows strong vanadium permeability resistance, which is as 8 times as that of commercial Nafion 212 membrane. At the same time, the bSPI-50 membrane has remarkable proton selectivity, which is four times as high as that of Nafion 212 membrane. The bSPI-50 membrane possesses slower self-discharge speed than Nafion 212 membrane. Furthermore, the bSPI-50 membrane achieves stable VRFB efficiencies during 200-time charge-discharge cycles at 120–180 mA cm−2. Simultaneously, the bSPI-50 membrane exhibits excellent capacity retention compared with Nafion 212 membrane. All results imply that the bSPI-50 membrane possesses good application prospect as a promising alternative separator of VRFB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call