Abstract

Surface modification of TiO 2 nanotube (NT) arrays with CuInS 2 nanoparticles (NPs) for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was reported. A pulse electrodeposition technique was used to prepare the CuInS 2 NPs, and the resulted CuInS 2 NPs, with a uniform size of about 20 nm, were found to deposit on the top surface of the highly oriented TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the CuInS 2 NPs modified TiO 2 NT (CuInS 2–TiO 2 NT) showed significantly enhanced photocatalytic activity towards 2,4-D under visible light. After 160 min irradiation, the removal rate of 2,4-D is 100% by using CuInS 2–TiO 2 NT, much higher than 65.2% by using the unmodified TiO 2 NT in photoelectrocatalytic process. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor CuInS 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call