Abstract
Vibration energy harvesters that use resonance phenomena exhibit a high output power density for constant frequency vibrations, but they suffer from a significant drop in performance for non-steady-state vibrations, which are important for practical applications. In this work, we demonstrate that the output power under an impulsive force can be increased significantly by placing a U-shaped metal component, called a dynamic magnifier (DM), under an MEMS piezoelectric vibration energy harvester (MEMS-pVEH) with a 6 mm long cantilever using a 3 μm thick Pb(Zr,Ti)O3 film. Based on the results of numerical calculations using a model of pVEH with a two-degree-of-freedom (2DOF) system, the DM was designed to have the same resonant frequency as the MEMS-pVEH and a high mechanical quality factor (Qm). The waveforms of the output voltage of the fabricated 2DOF-pVEHs were measured for impulsive forces with various duration times, and the output power was calculated by integrating the waveforms over time. The output power of the MEMS-pVEH placed on the DM with a Qm of 56 showed a gradual change according to the duration of applying an impulsive force and a maximum of 19 nJ/G2 (G: gravitational acceleration) when the duration of the impulsive force was 3.8 ms. This result was about 90 times greater than the output power of the MEMS-pVEH without a DM. While it is not easy to fabricate pVEHs with a complex 2DOF structure using only the MEMS process, we have demonstrated that the output power can be significantly improved by adding a spring structure to a simple MEMS-pVEH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.